
w Fermi National Accelerator Laboratory 

FERMILAB-Conf-73/101 

Minimization of Aberrations in Beam Line Design 

David C. Carey 

Fermi National Acceleratvr Laboratory 
P.O. Box 500, Bntavia, Illinois 60510 

December 1973 

PAC, San Francisco, California, March 1973 

V Operated by Universities Research .4**0ciation Inc. under Contract No. DE-ACW-76CH03000 with the hited States. Depatiment of Energy 



WININIZ*TION OF ABERRATIONS IN BEAM LINE DESIGN* 

David C. Carey 
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Batavia. Illinois 60510 

The aberrations present in a beam line 
represent the departure from the ideal first- 
order design. Such aberrations may be of 
second and higher order. Individual second- 
0.f~~ t~?xx may be represented by a matrix 
T. We derive a formalism for representing 
the net contribution of such terms to the 
beam dimensions. Corrective elements such 
as sextupoles 01 non-linearities in bending 
magnets may be employed. A method for 
minimizing the effects of second-order 
aberrations has been derived. This method 
has been incorporated into the program 
TRANSPORT. 2 Higher-order effects may now 
arise from the coupling of second-order 
therms. A computer program TURTLE3 is used 
to evaluate Such effects. 

Introduction 

Charged particle beam lines are, in 
general, initially designed to achieve 
certain first-order characteristics. O"e 
might, for example, wish to fix one or more 
elements of the first-order transfer matrix 
or place a condition on the phase ellipse at 
some point in the beam line. Representing 
a beam line to first order is a reasonable 
approximation for particle trajectories which 
are close to the central axis of the beam 
line and whose momentum is close to that of 
the central design momentum of the beam line. 

It is often desirable to extend the 
formalism to second order by the use of 
additional terms. These second-order terms 
represent a departure from the ideal first- 
order design. It is therefore desirable 
to be able to assess their effect, and, if 
found excessive, to introduce correcting 
elements which will minimize it. 

Such corrections may optimize the beam 
line design to second order, only to intro- 
duce aberrations of third and higher order. 
These higher-order effects are not revealed 
with a second-order matrix element approach. 
Therefore one must employ methods of ray 
tracing or a reasonable approximation 
thereof to determine such high-order terms. 

First- And Second-Order Transfer Matrices 

The position and direction of the 
trajectory of a charged particle at a given 
point in a beam line may be represented by 
a six component vector X = (x, 8, y, $, 9., 6), 
here written in row form. The components x 
and y represent the transverse location of 
the particle relative to the central 
trajectory, while the quantities E and $ 
represent respectively the angles made with 
the central trajectory in the same planes. 
The quantity 2 is a path length difference 
between the trajectory of interest and the 
central trajectory, and 6 is the fractional 

deviation of the momentum from the central 
design value. The components will also be 
denoted by appending a subscript to the 
letter x. 

TO first order the effect of a beam line 
--.._-^ -_L-:__ " d may be represented by a z~,i~arr UI~L~IX n.7 

The passage of a charged particle through the 
beam line is given by the equation X(1) = 
Rx(O), which X(O) is the initial and X(1) the 
final coordinate vector of the particle. The 
transfer matrix for the entire beam line may 
be obtained by multiplying together the 
transfer matrices for the magnets and drift 
spaces comprising the beam line. 

This formalism may be extended to second 
order by the use of an additional term giving: 

Xi(l) = E Rij Xj(0) + 1 T.. =,k Xj'O' Xk(0) (1) 
j jk 

where T is the second-order transfer matrix. 
Just like the first-order matrix It may be 
calculated from the R and 'I mat&es of the 
individual elements in the beam line. The R 
and T matrices for such individual elements 
have been calculated extensively by ~rown.1 

Estimates of Beam Dimensions 

In accelerator and beam line studies we 
are often more interested in the behavior of 
an aggregate of charged particles than in 
that of a single particle. A multi- 
dimensional phase ellipse formalism is often 
used to represent such an aggregate of 
particles. The particles are assumed to have 
their coordinate vectors lying in the interior 
of a six-dimensional ellipsoid whose equation 
IS given as: 

XT c-1 x = 1 (21 

The maximum extents of the envelope of the 
particles in each dimension are given by the 
square roots of the diagonal members of the 
0 nlatr1x. The orientation of the ellipse is 
determined by the off-diagonal matrix 
elements. 

The c matrix at the final point in the 
beam line may be obtained from the initial 
beam matrix via the equation: 

O(l) = RU(O) 2 (3) 

When effects of second- and hiyher- 
order are included, the final distribution is 
no longer given by an ellipsoid. we can 
however interpret the elements of the o 
matrix as giving the second moments of the 
phase-space distribution. Given such an 
interpretation we can once again take the 
square roots of the diagonal elements as 
giving representative beam dimensions. 

To calculate the u matrix at the final 



point in the beem line we need not only the 
R and 'I' matrices ad initial o matrix, bitt 
the fourth moments of the initial distri- 
bution. It is therefore necessary to be 
given more detaile about the initial 
distribution than can be obtained from the 
0 matrix. 

We choose to work with a model where 
the initial distribution is a multi- 
dimensional gaussian. This model has the 
advantage that the higher moments are easily 
CalC”hted. It also gives results which, 
under more careful analysis, prove to be 
of the right order of magnitude and, if 
anything, an overestimate. Thus if 
aberrations are important, their effect 
will show up in the final a matrix. 

For such an initial distribution 
centered on the beam line axis we label 
the fourth moments by the letter CT but with 
four indices. We then cm derive:5 

'ijke = cIij ake + Oik oje + Die crjk (4) 

The final second moments are given by: 

Oij(l) = c Rik 
ki 

Rje Ski(O) 

+L *ike Tjm ok~mn(") (51 
kemn 

The centroid ie now not centered on the beam 
axis but has coordinates given by: 

x. .(ll 1 Tijk 0. (0) (6) 
jk Ik 

The final distribution will now be centered 
around the new centroid position, with half 
widths given by the square roots of the 
diagonal elements of the matrix of second 
moments about that centroid. Such second 
moments t? are given by: 

ciijCl) = J: Rik Rjp. 'ki (0) 
kL 

+*I (' TikL em k 
~km(o)) CL Tjmn Utn(0)) 

n 
(7) 

For initially off-axis distributions 
more terms are involved. It is recommended 
that the reader consult the references. 
The procedure described has been iqcluded 
in the computer program TRANSPORT. It will 
therefore calculate the net effect of 
aberrations to the beam dimensions at any 
point in the beam line. 

Optimization To Second Order 

Once one has an estimate of the net 
effect of beam line aberrations, one can 
determine whether they constitute a problem. 
If so, a procedure exists for minimizing 
them. This procedure has also been 
incorporated into TRANSPORT. 

TO correct second-order terms in a beam 
line, me may employ sextupoles or sextupoie 
components in a bending magnet. The latter 

may be obtained by curving the entrance or 
exit faces or tailoring the pole tips to 
produce a quadratic term in the central 
field. One can now use TRANSPORT to determine 
the required strengths of any combination of 
the above named correcting elements. The 
program will adjust the strengths of the 
indicated correctina elements to minimize the 
effect of any aberrations desired. It can 
also vary the position of a sextupole 
within a drift space to determine optimum 
placement of the corrective element. 

In adjusting such corrective elements 
one can impose any of several possible 
constraints. One may wish simply that the 
net effect at a given point of all 
aberrations be minimized. One then uses 
TRANSPORT to minimize a certain element of 
the 0 matrix. 

Alternatively, only a subset of the 
second-order terms may constitute a problem. 
FCC example, the effect of certain terms 
may be merely to shift the focal plane. 
Others may represent imperfect focusing on 
this new plane. One nay wish to minimize 
the effect of the latter while leaving 
the former unconstrained. With TRANSPORT 
one can now constrain any set of T matrix 
elements directly. One can also assign 
relative weights to the different T matrix 
elements to produce the optimal configuration. 
The program will then determine the solution 
which best satisfies the indicated constraints. 

Higher-Order Terms 

Once a design has been optimized to 
second order, one then wonders about the 
effect of even higher-order terms. For 
example, has one introduced higher-order 
effects through the correcting elements used 
for second-order optimization? 

In sonle cases, investigating higher 
orders will require a genuine ray-tracing 
computer pr,ogram which follows individual 
particles through the beam line by integrating 
the equations of motion. For many appli- 
cations a lumped element ray-tracing 
computer program TURTLE3 will provide much 
information. 

In TURTLE, as in ray-tracing programs, 
rays are run through one at a time. Here 
though, a ray is carried across a single 
beam line element via a transfer matrix. 
Th"s results are truncated to second order 
only for single elements. 

Chromatic effects are treated exactly 
for quadrupoles and sextupoles, since the 
transfer matrix for each ray is calculated 
fro" the actual momentUrn of the ray. For 
bending magnets this is not possible, so 
chromatic effects are represetited via first- 
and second-order matrix elements. In high 
energy, separated function beams this 
proves to be a satisfactorv approximation. 

Hiqher-order effects due to the cumula- 
tive effect of second-order correcting 
elements can also be exhibited. Such effects 
have often proven important in NM, beams. 



Several designs, optimized to second order, 
had to be discarded due to the effect of 
higher-order terme. 

Non-linearities in quadrupoles may also 
be included. Multipoles up to and including 
a 40-pole are allowed. 

The beam profile at any point may be 
represented via one- and two-dimensional 
histograms. Any of the six coordinates 
cited above may be histoqrammed at any 
location in the beam line. For a two- 
dimensional histogram any coordinate at any 
location can be displayed with any other 
coordinate at any other point. 

Slits and magnet apertures may also be 
included. A flag may then be placed on a 
histogram so that rays are entered only if 
they are transmitted to come later point 
in the beam line. Thus good field regions, 
acceptances, and transmissivities may be 
determined. 

Below we show come sample output from 
TURTLE. In Figure 1 is shown a one- 
dimensional display of an uncorrected 
horizontal profile at the focus of an NAL 
beam. In Figure 2 the profile is narrowed 
by the addition to the beam line of two 
correcting sextupoles. In Figure 3 two 
additional sextupoles have been added to 
similarly reduce second-order terms in the 
vertical plane. The profile is noticeably 
wider. This effect is due to the coupling 
of second-order terms to produce 
undesirable higher-order effects. 
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Figure 1: uncorrected beam profile showing 
chromatic aberration 
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Figure 2: Corrected beam profile using two 
sextupoles 
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Figure 3: Seam profile with four sextupoles 
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